Part Number Hot Search : 
2SC4162 K3706 R5F21 1H471 DSPIC CY7C42 D4723 26X9250
Product Description
Full Text Search
 

To Download HA17741PS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ha17741/ps general-purpose operational amplifier (frequency compensated) ade-204-043 (z) rev. 0 dec. 2000 description the ha17741/ps is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and control fields. features high voltage gain : 106 db (typ) wide output amplitude : ?3 v (typ) (at r l 3 2 k w ) shorted output protection adjustable offset voltage internal phase compensation ordering information application type no. package industrial use HA17741PS dp-8 commercial use ha17741 pin arrangement - + 1 2 3 4 8 7 6 5 nc v cc vout offset null offset null vin( - ) vin(+) v ee (top view)
ha17741/ps 2 circuit structure v cc vout v ee to v cc to v cc offset null vin(+) vin( - ) pin 5 pin 1 absolute maximum ratings (ta = 25?) ratings item symbol HA17741PS ha17741 unit power-supply voltage v cc +18 +18 v v ee ?8 ?8 v input voltage vin 15 15 v differential input voltage vin(diff) 30 30 v allowable power dissipation p t 670 * 670 * mw operating temperature topr ?0 to +75 ?0 to +75 c storage temperature tstg ?5 to +125 ?5 to +125 c note: these are the allowable values up to ta = 45 c. derate by 8.3 mw/ c above that temperature.
ha17741/ps 3 electrical characteristics electrical characteristics-1 (v cc = ? ee = 15 v, ta = 25?) item symbol min typ max unit test condition input offset voltage v io 1.0 6.0 mv r s 10 k w input offset current i io 18 200 na input bias current i ib 75 500 na power-supply d v io / d v cc 30 150 m v/v r s 10 k w rejection ratio d v io / d v ee 30 150 m v/v r s 10 k w voltage gain a vd 86 106 db r l 3 2 k w , vout = 10 v common-mode rejection ratio cmr 70 90 db r s 10 k w common-mode input voltage range v cm 12 13 v r s 10 k w maximum output v op-p 12 14 v r l 3 10 k w voltage amplitude 10 13 v r l 3 2 k w power dissipation pd 65 100 mw no load slew rate sr 1.0 v/ m sr l 3 2 k w rise time t r 0.3 m s vin = 20 mv, r l = 2 k w , overshoot vover 5.0 % c l = 100 pf input resistance rin 0.3 1.0 m w electrical characteristics-2 (v cc = ? ee = 15 v, ta = ?0 to +75?) item symbol min typ max unit test condition input offset voltage v io 9.0 mv r s 10 k w input offset current i io 400 na input bias current i ib 1,100 na voltage gain a vd 80dbr l 3 2 k w , vout = 10 v maximum output voltage amplitude v op-p 10vr l 3 2 k w
ha17741/ps 4 ic operational amplifier application examples multivibrator a multivibrator is a square wave generator that uses an rc circuit charge/discharge operation to generate the waveform. multivibrators are widely used as the square wave source in such applications as power supplies and electronic switches. multivibrators are classified into three types, astable multivibrators, which have no stable states, monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable states. 1. astable multivibrator - + r 3 v cc v ee vout r 1 r 2 r l vin( - ) vin(+) c 1 figure 1 astable multivibrator operating circuit vin(+) 0 vin( - ) 0 vout 0 vertical: horizontal: circuit constants r 1 = 8 k w , r 2 = 4 k w r 3 = 100 k w , c 1 = 0.1 m f r l = v cc = 15 v, v ee = - 15 v 5 v/div 2 ms/div figure 2 ha17741 astable multivibrator operating waveform
ha17741/ps 5 2. monostable multivibrator - + r 3 v cc v ee vout r l r 1 r 2 c 2 c 1 input 0 figure 3 monostable multivibrator operating circuit vertical: horizontal: circuit constants r 1 = 10 k w , r 2 = 2 k w r 3 = 40 k w , c 1 = 0.47 m f c2 = 0.0068 m f r l = v cc = 15 v, v ee = - 15 v trigger input 0 vin(+) 0 vin( - ) 0 vout 0 figure 4 ha17741 monostable multivibrator operating waveform 3. bistable multivibrator - + vin( - ) vin(+) input 0 c r 2 r l v ee v cc r 1 vout figure 5 bistable multivibrator operating circuit
ha17741/ps 6 trigger input 0 vin(+) 0 vout 0 vertical: horizontal: circuit constants 5 v/div 2 ms/div r 1 = 10 k w , r 2 = 2 k w c = 0.0068 m f r l = v cc = 15 v, v ee = - 15 v figure 6 ha17741 bistable multivibrator operating waveform wien bridge sine wave oscillator - + r 4 470 k w 1 m w 1s2074 h r 3 c 3 2sk16 h 500 w rin c 2 r 2 c 1 r 1 5.1 k w r s r l 50 k w vout figure 7 wien bridge sine wave oscillator v cc = 15 v, v ee = - 15 v c 1 = c 2 /10 r 1 = 110 k w , r 2 = 11 k w v op-p = 2 v v op-p = 20 v 30 k 10 k 3 k 1 k 300 100 30 10 30 p 100 p 300 p 1,000 p 3,000 p 0.01 m 0.03 m 0.1 m c 1 capacitance (f) oscillator frequency f (hz) figure 8 ha17741 wien bridge sine wave oscillator f? characteristics
ha17741/ps 7 vertical: horizontal: test circuit condition 5 v/div 0.5 ms/div v cc = 15 v, v ee = - 15 v r 1 = 110 k w , r 2 = 11 k w c 1 = 0.0015 m f, c 2 = 0.015 m f test results f = 929.7 hz, t.h.p = 0.06% figure 9 ha17741 wien bridge sine wave oscillator operating waveform quadrature oscillator - + a2 - + a1 v 4 r 11 r 22 r 44 r 33 v 8 d 1 d 2 cos out sin out c t2 r t2 c t1 r t1 c 1 r 1 figure 10 quadrature sine wave oscillator figure 10 shows the circuit diagram for a quadrature sine wave oscillator. this circuit consists of two integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is, it also supplies the waveform delayed by 90? the output amplitude is essentially determined by the limiter circuit.
ha17741/ps 8 30 10 c t1 = 102 pf c t2 = 99 pf c 1 = 106 pf v cc = - v ee = 15 v r t1 = 150 k w , r t2 = 150 k w r 1 = 151.2 k w r 11 = 15 k w , r 22 = 10 k w r 33 = 15 k w , r 44 = 10 k w c t1 , c t2 , c 1 ? 1,000 pf use a mylar capacitor. with v op-p = 21 v p-p and r 22 = r 44 = 10 k w the frequency of the sine wave will be under 10 khz. sin out cos out 3 1.0 0.3 0.1 0.03 0.01 100 p 1,000 p 0.01 m 0.1 m c t1 , c t2 , c 1 (f) figure 11 ha17741 quadrature sine wave oscillator f - c t1 , c t2 , c 1 characteristics vertical: horizontal: circuit constants 5 v/div 0.2 ms/div c t1 = 1000 pf (990), c t2 = 1000 pf (990) r t1 = 150 k w , r t2 = 150 k w c 1 = 1000 pf (990), r 1 = 160 k w r 11 = 15 k w , r 22 = 10 k w r 33 = 16 v, r 44 = 10 k w v cc = 15 v, v ee = - 15 v ? sin out 0 ? cos out figure 12 sine and cosine output waveforms triangular wave generator - + a1 - + a2 d 1 r 3 d 2 r 4 c r 1 r 2 vout2 v a r 1 /r 2 vout1 hysteresis comparator integrator figure 13 triangular wave generator operating circuit
ha17741/ps 9 vertical: horizontal: circuit constants 10 v/div 10 ms/div v cc = 15 v, v ee = - 15 v r 1 = 10 k w , r 2 = 20 k w r 3 = 100 k w , r 4 = 200 k w c = 0.1 m f 0 0 0 vout1 vout2 v a figure 14 ha17741 triangular wave generator operating waveform sawtooth waveform generator + - + - vin r 2 6 k w v a r 4 3 k w v b r 3 6 k w r 1 i r 5 2.7 k w r 6 2.7 k w c 1 q 1 v r 5 k w 2sc1706 h vout r 7 2.7 k w r 8 2.7 k w v c figure 15 sawtooth waveform generator 0 0 v r vout vertical: horizontal: circuit constants 5 v/div 2 ms/div v cc = 15 v, v ee = - 15 v r 1 = 100 k w , c 1 = 0.1 m f v in = 10 v figure 16 ha17741 sawtooth waveform generator operating waveform
ha17741/ps 10 characteristic curves 2 3 1 5 6 3 6 12 15 20 16 12 8 4 0 input offset current i io (na) power-supply voltage v cc , v ee (v) input offset current vs. power-supply voltage characteristics 9 18 r 1 r 2 r 2 r 1 r a = 100% a = 0% v ee voltage offset adjustment circuit 3 6 12 15 100 80 60 40 20 0 power dissipation pd (mw) power-supply voltage v cc , v ee (v) power dissipation vs. power-supply voltage characteristics 9 18 3 6 12 15 120 110 100 90 80 70 voltage gain a vd (db) power-supply voltage v cc , v ee (v) voltage gain vs. power-supply voltage characteristics 9 18 r l 3 2 k w no load
ha17741/ps 11 3 6 12 15 20 16 12 8 4 0 maximum output voltage amplitude v op-p (v) power-supply voltage v cc , v ee (v) maximum output voltage amplitude vs. power-supply voltage characteristics 9 18 - 20 0 20 40 60 5 4 3 2 1 0 input offset voltage v io (mv) ambient temperature ta ( c) input offset voltage vs. ambient temperature characteristics 80 v cc = +15 v v ee = - 15 v r s 10 k w r l 3 2 k w - v op-p +v op-p - 20 0 20 40 60 20 16 12 8 4 0 input offset current i io (na) ambient temperature ta ( c) input offset current vs. ambient temperature characteristics 80 - 20 0 20 40 60 120 100 80 60 40 20 0 input bias current i ib (na) ambient temperature ta ( c) input bias current vs. ambient temperature characteristics 80 v cc = +15 v v ee = - 15 v v cc = +15 v v ee = - 15 v
ha17741/ps 12 - 20 0 20 40 60 120 110 100 90 80 70 voltage gain a vd (db) ambient temperature ta ( c) voltage gain vs. ambient temperature characteristics 80 - 20 0 20 40 60 90 80 70 60 50 40 power dissipation pd (mw) power dissipation vs. ambient temperature characteristics 80 ambient temperature ta ( c) v cc = +15 v v ee = - 15 v no load v cc = +15 v v ee = - 15 v r l 3 2 k w - 20 0 20 40 60 20 16 12 8 4 0 output shorted current i os (ma) ambient temperature ta ( c) output shorted current vs. ambient temperature characteristics 80 - 20 0 40 60 16 12 8 4 0 - 4 - 8 - 12 maximum output voltage amplitude v op-p (v) maximum output voltage amplitude vs. ambient temperature characteristics 20 80 ambient temperature ta ( c) v o = v cc v cc = +15 v v ee = - 15 v v cc = +15 v v ee = - 15 v r l = 10 k w
ha17741/ps 13 200 500 1 k 2 k 5 k 16 12 8 4 0 - 4 - 8 - 12 maximum output voltage amplitude v op-p (v) maximum output voltage amplitude v op-p (v) maximum output voltage amplitude vs. load resistance characteristics 10 k load resistance r l ( w ) 0 1.6 1.2 0.8 0.4 0 - 0.4 - 0.8 - 1.2 - 1.6 output voltage vout (v) 20 40 60 80 100 v cc = +15 v v ee = - 15 v v cc = +15 v, v ee = - 15 v r 1 = 51 w , r 2 = 5.1 k w see the voltage offset adjustment circuit diagram. offset adjustment characteristics resistor position a (%) r = 10 k w r = 5 k w r = 20 k w 500 1 k 50 k 100 k 28 24 20 16 12 8 4 frequency f (hz) maximum output voltage amplitude vs. frequency characteristics 200 2 k 5 k 10 k 20 k 200 k 500 k 100 500 1 k 50 k 100 k 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 input resistance rin (m w ) frequency f (hz) input resistance vs. frequency characteristics 200 2 k 5 k 10 k 20 k 200 k 500 k 1 m 0 v cc = +15 v v ee = - 15 v r l = 10 k w 100
ha17741/ps 14 50 200 1 k 50 k 100 k 40 0 - 40 - 80 - 120 - 160 - 200 phase f (deg.) frequency f (hz) phase vs. frequency characteristics 100 2 k 5 k 10 k 20 k 200 k 500 k - 240 500 1 m 2 m 10 50 200 10 k 20 k 120 100 80 60 40 20 0 - 20 voltage gain a vd (db) frequency f (hz) voltage gain vs frequency characteristics 20 500 1 k 2 k 5 k 50 k 100 k 40 100 500 k 2 m 200 k 1 m v cc = +15 v v ee = - 15 v open loop v cc = +15 v v ee = - 15 v open loop 10 50 200 10 k 20 k 120 100 80 60 40 20 0 voltage gain a vd (db) frequency f (hz) voltage gain and phase vs. frequency characteristics (1) 20 500 1 k 2 k 5 k 50 k 100 k - 20 100 200 k 500 k 1 m 2 m 10 50 200 10 k 20 k 120 100 80 60 40 20 0 - 20 voltage gain a vd (db) frequency f (hz) voltage gain and phase vs. frequency characteristics (2) 20 500 1 k 2 k 5 k 50 k 100 k - 40 100 200 k 500 k 1 m 2 m v cc = +15 v v ee = - 15 v closed loop gain = 60 db v cc = +15 v v ee = - 15 v closed loop gain = 40 db 0 - 60 - 120 - 180 0 - 60 - 120 - 180 phase f (deg.) phase f (deg.) a vd f f a vd
ha17741/ps 15 10 50 200 10 k 20 k 120 100 80 60 40 20 0 - 20 voltage gain a vd (db) frequency f (hz) voltage gain and phase vs. frequency characteristics (3) 20 500 1 k 2 k 5 k 50 k 100 k 100 200 k 500 k 1 m 2 m 0 - 60 - 120 - 180 phase f (deg.) - 40 v cc = +15 v v ee = - 15 v closed loop gain = 20 db a vd f 10 50 200 10 k 20 k 120 100 80 60 40 20 0 - 20 voltage gain a vd (db) frequency f (hz) voltage gain and phase vs. frequency characteristics (4) 20 500 1 k 2 k 5 k 50 k 100 k 100 200 k 500 k 1 m 2 m 0 - 60 - 120 - 180 phase f (deg.) - 40 v cc = +15 v v ee = - 15 v closed loop gain = 0 db a vd f 2 3 6 3 6 9 12 15 0.8 0.6 0.4 0.2 0 rise time t r ( m s) power-supply voltage v cc , v ee (v) rise time vs. power-supply voltage characteristics 18 impulse response characteristics test circuit vout r l c l v 2 90% 10% vout t r v 1 vout = 100 (%) v 2 v 1 vin = 20 mv r l = 2 k w c l = 100 pf vin
ha17741/ps 16 3 6 9 12 15 40 30 20 10 0 overshoot vover (%) power-supply voltage v cc , v ee (v) overshoot vs. power-supply voltage characteristics 18 0 0.4 0.8 1.2 40 30 20 10 0 output voltage vout (mv) time t ( m s) impulse response characteristics 1.6 vin = 20 mv r l = 2 k w c l = 100 pf v cc = +15 v v ee = - 15 v r l = 2 k w c l = 100 pf v in = 20 mv
ha17741/ps 17 package dimensions hitachi code jedec eiaj mass (reference value) dp-8 conforms conforms 0.54 g unit: mm 1 4 5 8 9.6 10.6 max 0.89 1.3 6.3 7.4 max 2.54 min 5.06 max 2.54 0.25 0.48 0.10 7.62 0.25 + 0.10 ?0.05 0 ?15 0.1 min 1.27 max
ha17741/ps 18 cautions 1. hitachi neither warrants nor grants licenses of any rights of hitachi? or any third party? patent, copyright, trademark, or other intellectual property rights for information contained in this document. hitachi bears no responsibility for problems that may arise with third party? rights, including intellectual property rights, in connection with use of the information contained in this document. 2. products and product specifications may be subject to change without notice. confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. hitachi makes every attempt to ensure that its products are of high quality and reliability. however, contact hitachi? sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. design your application so that the product is used within the ranges guaranteed by hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail- safes, so that the equipment incorporating hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the hitachi product. 5. this product is not designed to be radiation resistant. 6. no one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from hitachi. 7. contact hitachi? sales office for any questions regarding this document or hitachi semiconductor products. hitachi, ltd. semiconductor & integrated circuits. nippon bldg., 2-6-2, ohte-machi, chiyoda-ku, tokyo 100-0004, japan tel: tokyo (03) 3270-2111 fax: (03) 3270-5109 copyright ? hitachi, ltd., 2000. all rights reserved. printed in japan. hitachi asia ltd. hitachi tower 16 collyer quay #20-00, singapore 049318 tel : <65>-538-6533/538-8577 fax : <65>-538-6933/538-3877 url : http://www.hitachi.com.sg url northamerica : http://semiconductor.hitachi.com/ europe : http://www.hitachi-eu.com/hel/ecg asia : http://sicapac.hitachi-asia.com japan : http://www.hitachi.co.jp/sicd/indx.htm hitachi asia ltd. (taipei branch office) 4/f, no. 167, tun hwa north road, hung-kuo building, taipei (105), taiwan tel : <886>-(2)-2718-3666 fax : <886>-(2)-2718-8180 telex : 23222 has-tp url : http://www.hitachi.com.tw hitachi asia (hong kong) ltd. group iii (electronic components) 7/f., north tower, world finance centre, harbour city, canton road tsim sha tsui, kowloon, hong kong tel : <852>-(2)-735-9218 fax : <852>-(2)-730-0281 url : http://www.hitachi.com.hk hitachi europe ltd. electronic components group. whitebrook park lower cookham road maidenhead berkshire sl6 8ya, united kingdom tel: <44> (1628) 585000 fax: <44> (1628) 585160 hitachi europe gmbh electronic components group dornacher stra b e 3 d-85622 feldkirchen, munich germany tel: <49> (89) 9 9180-0 fax: <49> (89) 9 29 30 00 hitachi semiconductor (america) inc. 179 east tasman drive, san jose,ca 95134 tel: <1> (408) 433-1990 fax: <1>(408) 433-0223 for further information write to: colophon 2.0


▲Up To Search▲   

 
Price & Availability of HA17741PS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X